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The equation for electrostatic potential which arises from the implicit moment

method in plasma simulation is a nonsymmetric elliptic equation. We present results
using a simple multigrid method as a preconditioner to General Minimum RESidual
(GMRES) to iteratively solve this nonsymmetric elliptic equation in two dimensions.
It is demonstrated that a simple multigrid method produces an effective precondi-
tioner. It is also demonstrated that under some conditions the required number of
linear iterations is independent of grid dimension. Results are presented for both
uniform and nonuniform grid problems. © 1999 Academic Press
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1. INTRODUCTION

Much effort has gone into the development of implicit methods for electromagn
kinetic plasma simulation. Two such methods are the implicit moment method [1] anc
direct implicit method [2]. In the implicit moment method a Taylor series expansion in ti
is used to approximate new time charge density and current as a function of old time cl
density and current. The new time approximations are then used in Maxwell's equatio
solve implicitly for the electric and magnetic fields. Substituting new time approximati
of charge density into Poisson’s equation results in a nonsymmetric elliptic equatior
electrostatic potential. The asymmetry is a result of a convection-like term arising f
E x B drifts of the charged particles. The asymmetry is bounded, and typically not as |
as the asymmetries in convection diffusion problems. However, it precludes symm
system solvers and decreases robustness and efficiency. The maximum allowable tirr
in this method has often been found to be governed by the iterative elliptic field solver,
not the implicit moment method itself [3]. In Ref. [3] it was shown, in one dimension, tl
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by using a direct method to solve the field equations, significantly larger time steps co
be achieved. Along with frequently being the controlling factor in time step size selectic
the iterative solution of the nonsymmetric elliptic equation usually dominates the CF
time of a simulation. Research into robust and efficient implicit field solvers has also be
an important part of the direct implicit plasma simulation method [4]. There is current
significant motivation to perform large time step, fine grid 3-D, implicit plasma simulatic
of magnetic reconnection in Earth’s magnetotail [5, 6].

Nonsymmetric systems of equations occur in many problems. In general circulation m
els, eddy transport processes are described by a tensor diffusivity that can be decomy
into symmetric and antisymmetric parts [7]. Pert [8] discusses issues arising in the numel
solution of the Braginskii plasma transport equations and introduces extremal princip
which are satisfied by the differential equations and should be satisfied by numerical app
imations to these equations. Finally, implicit formulations of convection—diffusion result
nonsymmetric systems [9, 10]. Methods modeled on the conjugate gradient method |
been developed for nonsymmetric systems [11-14]. A comment that is often repeate
that when the nonsymmetric part is relatively large, convergence may be slow [11, 15]. |
proved convergence for nonsymmetric systems can be obtained by effective preconditio
[16, 10, 17, 18].

We have initiated research into the development of an efficient and robust iterative
liptic solver which will allow large time step implicit plasma simulations, on fine grids
in two and three dimensions. Our algorithm uses the multigrid method [19-21] as a
conditioner to a Krylov subspace based iterative method applicable to nonsymmetric
tems, GMRES (General Minimal RESidual) [12]. It is known that ILU-based precond
tioners can be effective for nonsymmetric problems, but they do not scale well to fi
grids. It is also known that developing an effective multigrid solver for a nonsymmetr
problem can be challenging. One is often required to use matrix-dependent prolonga
operators, sophisticated smoothers, and expensive multigrid cycles, such as the W-
the F-cycle. In Ref. [17] sophisticated multigrid methods are studied as both solvers :
preconditioners for nonsymmetric problems. For the problems considered, multigrid v
found to be more robust and efficient as a preconditioner than it was as a stand-a
solver. Here, multigrid is considered only as a preconditioner, and the multigrid precor
tioner will have very simple attributes in terms of prolongation operators, smoother, a
cycle.

For this study we will work with the CELEST2D code, an unpublished modification ¢
CELEST1D [3]. CELEST2D is electrostatic but contains a spatially varying (time ind
pendent) magnetic field. Indeed, it is the electrostatic potential equation, from the impl
moment method, which provides the greatest challenge to iterative solvers. The ellj
equation for electrostatic potentiap, in the implicit moment method of CELEST2D,
is

V- [e() - V@] = p(1). @

Here,r is the position vectore(r) is a spatially varying dielectric tensor, apdr) is the
space charge. The functional formedf) in CELEST2D is

6=1+ZO{S{1—1X95+9395}, (2)
S
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wheres is a species label (e.g., electrons and ions)ayahd(2s are given by

Qsdt
Qs = B, 3
5= 2mec 3)
s ot?
Os = CUDS? (1 + QS . QS) (4)

gs is the species charges is the species masB,is the magnetic field, andis the speed of
light. The plasma frequenciesps, and cyclotron frequency?s, are comparable or larger
in size thanst 1 in typical simulations with CELEST2D. Consider the asymmetry of th
dielectric tensok. The symmetric and antisymmetric partsecdre given by

€s = %[6 + GT]’

€n= %[e —€'].
One can verify by direct substitution that(B) = e(—B), and thus that

Voen-E=V-> as(E x Q). (5)

As noted by Plumb [7], this is a convection term,

V) (E x Q) = +(V x as8) - Vo. (6)

The convection “velocity,V x as - €, is solenoidal.

Equation (1) is discretized using finite volumes in a general coordinate system, wl
produces a 9-point numerical stencil in two dimensions and a 27-point stencil in tf
dimensions [22]¢ (r) andp(r) are located at cell centers aa@) is located at cell vertices.
It should be noted that the resulting numerical stencil for a 2-D uniform grid,eith= 1,
is not the standard 5-point star, but rather a 5-point cross.

Again, the major difficulty arises from the fact that the off-diagonal componerdg pf
which are proportional to the simulation time s#p cause the resulting matrix equation
for ¢,

A¢ = p, ()

to be nonsymmetric. Not only i& nonsymmetric, but in some cases diagonal dominan
may be lost on nonuniform grids.

2. MULTILEVEL PRECONDITIONED GMRES

The base solver for Eq. (1) in CELEST2D is a preconditioned Krylov method. T
Krylov method is GMRES [12] since the matrix equation is nhonsymmetric. The base |
conditioner is a Jacobi iteration, otherwise referred to as diagonal scaling. Preconditic
Krylov methods are modern, robust, general elliptic solvers, and they can be implement
a matrix-free fashion (linear or nonlinear). However, they do not scale well with grid refir
ment. By this we mean that as the number of grid points increases, the number of itera
needed to achieve the same level of convergence also increases.
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Probably the best known Krylov method is the conjugate gradient (CG) method mé

popular in the computational physics community by Kreshaw [23]. It is worthwhile t
compare CG, which can be applied only to symmetric matrices, to GMRES, which can
applied to nonsymmetric matrices, in terms of work and storage as a function of iterati
In CG, work scales linearly, and required storage is constant, as the number of iterati
increases because CG enjoys a short vector recurrence relationship which allows or
construct an orthogonal set of search directions without storing all of the search directic
In GMRES, work scales quadratically, and required storage scales linearly, as a functio
iteration count because GMRES must store all of the search directions in order to main
an orthogonal set. An often employed “fix” is to store okliKrylov vectors, GMRE ).
If linear convergence is not achieved afteiterations a new, temporary, linear solution
is constructed from the existing vectors and GMRES is restarted, with this temporar)
solution as the initial guess. This restarting can significantly affect the linear converge
rate. When one uses GMRES one is greatly motivated to keep the required numbe
GMRES iterations low, which translates into effective preconditioning.

The right preconditioned form of Eq. (7) is

(APH(Pg) = p, (8)

whereP represents symbolically the preconditioning matrix &1d represents its inverse.
In practice, this inverse is only approximately realized through some standard itera
process. Each GMRES iteration requires a preconditioned matrix—vector multiply,

w = (AP Yy, ()]

wherev is the knownn™, search direction ana represents the first step in forming the
(n+ 1)Stsearch direction. The multiply requires two steps. Step 1 is preconditioning, whe
Py =visiteratively solved foy. Step 2 is the matrix—vector multiply,= Ay. Itis precisely
step 1 where we will employ a multigrid method.

In solving linear systems arising from discretized PDESs itis most common to see varie
of incomplete factorizations (ILU-GMRES or ICCG) as preconditioners or matrix splittin
methods (Jacobi, Gauss-Seidel). For any single grid preconditioner, whose memory st
linearly with problem size, the inequality holds,

K (APsg) y, > (APSE) - (10)

Here,x (M) is the condition number of matriM, N is the dimension of the linear system

N> > N;, and the subscrigbG denotes single grid. The number of Krylov iterations re-
quired to achieve a selected convergence tolerance is linearly proportional to the cond
number of the preconditioned system. ThusNagncreases, not only will the cost of a

GMRES iteration increase but also the number of GMRES iterations, for a given conv
gence tolerance, will increase. An approach for overcoming this scaling is the multig
method [19-21]. Multigrid methods promise optimal scaling with problem size, whic
means that the number of iterations required, for a given convergence tolerance, is i
pendent of grid dimension. However, as stated previously, developing a robust multic
method for nonsymmetric problems can be challenging, and very time consuming, of
requiring significant problem specific tuning. We will consider the performance of a simy
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multigrid method as a preconditioner, knowing that
«(APyiG) v, ~ © (APYiG) y, (11)

The subscripMG here denotes a multigrid based preconditioner. This basic concep
not new [24]. The application of multigrid methods as preconditioners to CG on symn
ric problems has been considered for problems arising in incompressible fluid flow [.
semiconductor simulation [26], and porous media flow [27]. For nonsymmetric proble
sophisticated multigrid has been considered a preconditioner in Ref. [17], and simple Ir
grid methods have been considered a preconditioner in Ref. [18].

For completeness, and clarity, we review briefly a standard 2-Grid V-Cycle [19-21].
wish to obtain the iterative solution #y =v with f =fine, andc = coarse.

1. RelaxP'y? =v for y} (Jacobi, Gauss-Seidel, ILU, ...).

2. Evaluate the linear residuas’ =v —Pfy}, and restrict it to a coarse grigs® =
R xresf.

3. Solve the coarse grid proble® sy, =res”, for the coarse grid correctiaty..

4. Prolong the coarse grid correction and update the fine grid solution vegtéter,
yi + P x8ye.

5. RelaxPfy? =v for y$ (Jacobi, Gauss-Seidel, ILU, ...).

Still to be defined are: (1) a definition of the prolongation and restriction operBtargd
R, and (2) a definition of°. A standard multigrid (greater than 2) V-Cycle is realizet
by recursively inserting steps 1 through 5 into step 3 until a “very coarse” grid has b
reached, upon which a direct solve is performed. This will be the preconditioner for sol
Eq. (8) with preconditioner GMRES.

3. MULTIGRID SPECIFICS

To complete the definition of the multigrid preconditioner one must define restricti
R, and prolongation?, operators, and a method for constructing the required coa
grid matrices. In the multigrid method, restrictioR, is used to transfer residuals (i.e.,
v—Pfyl) from a fine to a coarse grid, and prolongati@h, is used to transfer solution
vector corrections (i.edy.) from a coarse to a fine grid. In this study, piece-wise consta
interpolation is used for botR and P, with R possibly volume weighted. This is a very
simple choice and most likely would not produce an optimal multigrid method as a sta
alone solver [21].

Next, one must define a method for calculating the coarse grid representafionhare
are at least two distinct options. The first is to ap@lyto e(r) to transfer the essential
physics from the fine to the coarse grid and re-discretize Eq. (1). A second approach
use the restriction and prolongation operators, along with the fine grid linear operato
construct a coarse grid operator. This would come from

PC=R P’ xP. (12)
HereP® is the(N/2) x (N/2) coarse grid operator arRf is theN x N fine grid operator.

This approach is often referred to as a Galerkin coarse grid operator [21, 20]. In this s
the second approach is employed due to its simplicity and “Black Box” nature. Clea
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only the fine grid matrix needs to be supplied to the preconditioner. Our approach is rel
to the Black Box multigrid concept [28] with the main exception that in Ref. [28] mor:
sophisticated inter-grid transfer operators are used.

3.1. Additive Correction Multigrid

We present a detailed algebraic explanation of the preconditioner as it would be app
to a simple 2-D Poisson problem on a uniform gird with a 5-point star stencil. The origin
this simple multilevel idea can be traced back to Ref. [29], and its application as a multig
solver can be found in Ref. [30]. Assume a simple 2-D 5-point operator for the proble
V2y =v, which results in a penta-diagonal mati,,

Pf = (P1f, p2f, P3', P4f, p5"). (13)
We desire the solution tBy = v for each finite volumei( j). That is,
PL' xyiiej + P2l *yi 1+ P3 %y + P4 #yijea+ PS5 kyignj = vij. (14)
Given an initial fine grid solutioty*, the linear residual at finite volume, () is

f f f % f * f * f
(15)

For the two-level grid shown in Fig. 1, the four fine grid volum@sj), (i + 1, j), (i, j + 1),
and(i +1, j + 1), are combined to produce one coarse grid volurne]). The coarse grid

‘ (1LJ+1)

(i: j+1) (i'l"lx j+1)
© ©
(I-1,J) (I,J) (I+1,J)
_. ‘_
© © ©
(i-L,J) (i, 3) (i+1,1)
O]
(iv J'l)
(1,3-1)

FIG. 1. Two-level finite volume grid.
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correction is defined using piece-wise constant prolongafon,

Vi,j = y|*J +8y1.3,
Yitrj = Yiyaj Y10,
Yij+1 = Y41+ 8V,

yi+1,j+1 = yi*+1_j+1 + Syl,\]'

(16)

The next step is to add the four equations corresponding to voldimes (i +1, j),
(,j+1),d+1,j+1) that result from inserting Eq. (16) into Eq. (14). The contributio
to this sum from volumei( j) is

Plif,j * (Vg +Yi-10) + PZJJ- * (Y1 +8Y19-1) + P3if,j * (Y +6y19)
+ P4if,j * (Yt + P5if,j * (Vg +6Y1,3) = vij. (17)

The coarse grid residual is defined by piece-wise constant restri&ion,

f f f f
reg ;=res; +res,;;+res; ;+res . (18)

After the four equations from the fine grid are added and terms are collected the follov
coarse grid correction equation results for volurhel():

P1y 3 8yi_13 + P2{ ;% 8y; 3-1+ P3} ;% 8y 5 + P47 ; %8y 341
+ P5(|:,‘] *0Y1+1.3 = re§’3. (19)

As a result it can be seen that the coarse grid maRix=R % P’ x P) is defined as

f f

f f
P2f ; = P2 + P24,

f f
P4, = P41+ P4 (20)

f f
P5[; = P51 + P5, j:1,

P3 ; = Sum of all 20P f's from the 4 fine grid volumes
—P1f ; — P2{ ; — P47, — P5( ;.

Thus a simple coarse grid matrix that is straightforward to form has resulted from sin
choices forR andP. The boundary conditions A" are automatically included iR°. This
multigrid preconditioner is easy to add to an existing preconditioned GMRES solver. |
well known that for a second order equation one should use either bi-linear prolongatic
restriction to obtain an optimal multigrid algorithm [21]. However, results suggest that
simple algorithm above is an effective preconditioner. Recall that, for our problem, in 2
Pf is actually a matrix with nine diagonals.

3.2. Smoother

Finally, a smoother for the multigrid algorithm must be chosen. We will use a sim
damped Jacobi iteration where the damping coefficient may change from cell to cell.
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preconditioner will be one V-cycle [19] with an equal number of pre- and post-smoothi
steps (sweeps), a(V, v) cycle. Traditionally in multigrid a direct solve is used on the
coarsest grid, but that is not done here. While Jacobi may not be the most effective smoo
its use results in potentially significant storage savings, especially in 3-D with a 27-pc
stencil, in the following manner. Multipass Jacobi fox =b with A=L + D + U can be
written as

X" = Db — (L + U)x"]. (21)

This requires the formation dd, andL, andU, i.e., A. In plasma simulation, particles
compete for memory since the more available memory one has the more particles one
simulate. Thus one is motivated to consider all options for memory savings in the ellig
field solver. A reduced storage approach exploits the relaflor; U)x" = Ax" — Dx",
and iterates the equation

X"t = Db — (AX" — DxM], (22)

whereAx" formed in matrix-free fashion [31]. Thus one need only f@rfmain diagonal,
i.e., one non-zero diagonal) and be able to fékmf' andD on coarse grids. This is our
primary motivation for using the Jacobi smoother. The damped Jacobi iteration is realize«

X" = Db — (AX" — Dx")], (23)

whereD is a locally modified version db.

4. PERFORMANCE RESULTS

For the first performance result the single grid Jacobi based preconditioner is compz
to the multigrid Jacobi based preconditioner. The physical parameters for this probil
arem; /me =100 wpe=1, Qe/wpe=0.5 wpe - 5t =2.0. These results are for a uniform
grid. The number of sweeps is(3 = 3) and the damping coefficient is a uniformi3
for both the single grid preconditioner and the multigrid smoother. Five GMRES vectc
are stored and restart is employed with a linear convergence tolerand®ofl©. The
boundary conditions op are Dirichlet on three sides and Neumann of the fourth side
Table | contains performance data as a function of grid refinement fer32 64x 64,
128x 128, and 256« 256 grids. The data are averaged over three time steps, with the sa
time step on each cycle and on each grid. All runs were made on a CRAY Y-MP.

TABLE |
Algorithm Performance for a Uniform Grid as a Function of
Grid Refinement: Average Number of GMRES lIterations per
Time Step, and Ratio of CPU Time

Single grid (SG) Multigrid (MG) CPU ratio
Grid preconditioner preconditioner SG/MG
32x 32 48 8.7 1.8
64 x 64 116 9 2.8
128x 128 398 11 5.65

256 x 256 691 9 10.5
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FIG. 2. Performance as a function of GMRES vectors stored.

Itis quite apparent that the multigrid preconditioner has not only significantly reduced
required number of GMRES iterations; it has also decreased the growth of required itera
as a function of grid refinement. In fact, the number of required GMRES iterations app
to be independent of the grid dimension. On the 2586 grid a factor of 10 speedup has
been achieved.

As a second study we vary the Krylov subspace dimension, GMESIith the results
plotted in Fig. 2. This is the same problem as that above on the<1I28 uniform grid.
Restart is employed with a linear convergence tolerancelof 10-°. The same time step
is used on all grids, and the data are averaged over three time steps.

It should be noted that the storage of the matrix on the fine grid is equivalent to r
GMRES vectors, and that the additional multigrid storage is roughly equivalent to f
GMRES vectors. Given this we can see that the multigrid preconditioner can be viewe
providing equivalent CPU performance for about half of the storage. If this performal
carries over to the reduced storage Jacobi smoother there could be a factor of 10 sé
in storage for the same CPU performance. With the multigrid based preconditioner, w
the average number of GMRES iterations per time step is 10, there is no benefit to he
a Krylov space larger than 5.

Next, the performance of the single grid Jacobi based preconditioner is compared t
multigrid Jacobi based preconditioner, for a nonuniform grid. These results have no vol
weighting in the restriction operator. The number of sweeps(is=2 1) and the damping
coefficient is locally determined to ensure diagonal dominance, for both the single
preconditioner and the multigrid smoother. Five GMRES vectors are stored and rest:
employed with a linear convergence tolerance 6f410°. Again the boundary condi-
tions ong¢ are Dirichlet on three sides and Neumann on the fourth side. Table Il conte
performance data as a function of grid refinement fox32, 64x 64, 128x 128, and
256 x 256 grids. The data were averaged over three time steps, with the same time st
each cycle and on each grid.

It is again apparent, in the results of Table Il, that the multigrid preconditioner has
only significantly reduced the required number of GMRES iterations; it has also decre:
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TABLE Il
Algorithm Performance for a Nonuniform Grid as a Function
of Grid Refinement: Average Number of GMRES lterations per
Time Step, and Ratio of CPU Time

Single grid (SG) Multigrid (MG) CPU ratio

Grid preconditioner preconditioner SG/MG
32x 32 451 24 8.2
64 x 64 1672 39.5 115
128x 128 6217 64 14.5
256 x 256 7322 39 19.8

the growth of required iterations as a function of grid refinement. The nonuniform grid i
much more difficult problem, especially for our simple Jacobi smoother. However, insid
simple multigrid preconditioner we still obtain good performance and excellent performar
relative to no multigrid. Note that the CPU gains for this problem are substantial, even on
smaller grids. Our experience suggests that 40 GMRES iterations is a respectable nul
on a 256x 256 nonuniform grid, considering that the Krylov subspace dimensionis only!

As a measure of diagonal dominance we have computed the average, over all rows i
matrix, of the main diagonal divided by the sum of the absolute values of all off-diagor
entries in that row. For the 32 32 uniform grid this number was approximately 2.0, while
for the 32x 32 nonuniform grid this number was approximately 1.0. The nonuniform gri
problem has specific rows in which this diagnostic is less than 1.0. This suggests u:
a more robust smoother such as ILU. However, for our specific problem we are stron
motivated by the potential memory savings in the reduced storage Jacobi smoother,
thus we do not consider ILU.

The results given in Table Il seem to indicate that the £288 grid was particularly
difficult. We have redone this calculation with a Krylov subspace dimension of 10 a
20 with the multigrid preconditioner. With GMRES(10) the average GMRES iteratior
dropped to 39, and the GMRES(20) the average GMRES iterations dropped to 33. Tl
for more difficult nonuniform grid problems there is a possible benefit to retaining a larg
Krylov subspace dimension. However, if storage is an issue, the performance of GMRE!
acceptable.

Finally, we mention that the possibility of volume weighting in our restriction opef@tor
was considered on the nonuniform grid problem. It did not seem to provide any consisi
improvement on this problem.

5. CONCLUSIONS

We have developed and implemented a multigrid based preconditioner for GMRES
have applied this to the solution of a nonsymmetric elliptic problem that arises in impli
plasma simulation. A simple multigrid method as a preconditioner to GMRES appear:
make a robust and efficient method for the elliptic field solver required in implicit plasn
simulation codes on the problems considered. The multigrid based preconditioner canre
the simple Jacobi based smoother effective, even on problems where diagonal domin
is marginal. On the uniform grid problem, the simple multigrid based preconditioner insi
of GMRES(5) produced an effective iterative solver, with the number of required iteratio
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independent of grid dimension. The CPU gains, as compared to the single grid Je
preconditioner, were significant with a factor of 10 on fine uniform grids and a factor of
on fine nonuniform grids.

It is not straightforward to compare the results of this study to similar studies involvi
convection—diffusion equations, which also yield nonsymmetric systems.These studie:
more sophisticated multigrid preconditioners [17]. However, the same simple multigrid |
conditioner presented here has been used inside of a Newton—-GMRES method to sol
incompressible, convection dominated, Navier—Stokes equations in Ref. [18]. The sir
multigrid preconditioner significantly outperformed an ILU based preconditioner and
multigrid preconditioned Newton—-GMRES method was shown to be competitive witl
more sophisticated nonlinear multigrid method. For the specific application to the ellij
field solve required in implicit plasma simulation the results of a simple multigrid bas
preconditioner are quite positive, and thus should be considered for other nonsymm
systems. In the future we hope to combine the positive results of this study and the re
in Ref. [18] and apply our multilevel solve to the streamlined Darwin field equations [4

Finally, our true “measure of merit” for the simple multigrid preconditioner applied
our problem is not producing an algorithmically optimal solver, although the result for
uniform grid problem presented appears to approach this. The true “measure of mer
the impact this method can have on implicit plasma simulation with a large time step, wi
there is a clear need for a robust and efficient elliptic equation solver.
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