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The equation for electrostatic potential which arises from the implicit moment
method in plasma simulation is a nonsymmetric elliptic equation. We present results
using a simple multigrid method as a preconditioner to General Minimum RESidual
(GMRES) to iteratively solve this nonsymmetric elliptic equation in two dimensions.
It is demonstrated that a simple multigrid method produces an effective precondi-
tioner. It is also demonstrated that under some conditions the required number of
linear iterations is independent of grid dimension. Results are presented for both
uniform and nonuniform grid problems. c© 1999 Academic Press
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1. INTRODUCTION

Much effort has gone into the development of implicit methods for electromagnetic
kinetic plasma simulation. Two such methods are the implicit moment method [1] and the
direct implicit method [2]. In the implicit moment method a Taylor series expansion in time
is used to approximate new time charge density and current as a function of old time charge
density and current. The new time approximations are then used in Maxwell’s equations to
solve implicitly for the electric and magnetic fields. Substituting new time approximations
of charge density into Poisson’s equation results in a nonsymmetric elliptic equation for
electrostatic potential. The asymmetry is a result of a convection-like term arising from
E×B drifts of the charged particles. The asymmetry is bounded, and typically not as large
as the asymmetries in convection diffusion problems. However, it precludes symmetric
system solvers and decreases robustness and efficiency. The maximum allowable time step
in this method has often been found to be governed by the iterative elliptic field solver, and
not the implicit moment method itself [3]. In Ref. [3] it was shown, in one dimension, that
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by using a direct method to solve the field equations, significantly larger time steps could
be achieved. Along with frequently being the controlling factor in time step size selection,
the iterative solution of the nonsymmetric elliptic equation usually dominates the CPU
time of a simulation. Research into robust and efficient implicit field solvers has also been
an important part of the direct implicit plasma simulation method [4]. There is currently
significant motivation to perform large time step, fine grid 3-D, implicit plasma simulation
of magnetic reconnection in Earth’s magnetotail [5, 6].

Nonsymmetric systems of equations occur in many problems. In general circulation mod-
els, eddy transport processes are described by a tensor diffusivity that can be decomposed
into symmetric and antisymmetric parts [7]. Pert [8] discusses issues arising in the numerical
solution of the Braginskii plasma transport equations and introduces extremal principles,
which are satisfied by the differential equations and should be satisfied by numerical approx-
imations to these equations. Finally, implicit formulations of convection–diffusion result in
nonsymmetric systems [9, 10]. Methods modeled on the conjugate gradient method have
been developed for nonsymmetric systems [11–14]. A comment that is often repeated is
that when the nonsymmetric part is relatively large, convergence may be slow [11, 15]. Im-
proved convergence for nonsymmetric systems can be obtained by effective preconditioning
[16, 10, 17, 18].

We have initiated research into the development of an efficient and robust iterative el-
liptic solver which will allow large time step implicit plasma simulations, on fine grids,
in two and three dimensions. Our algorithm uses the multigrid method [19–21] as a pre-
conditioner to a Krylov subspace based iterative method applicable to nonsymmetric sys-
tems, GMRES (General Minimal RESidual) [12]. It is known that ILU-based precondi-
tioners can be effective for nonsymmetric problems, but they do not scale well to fine
grids. It is also known that developing an effective multigrid solver for a nonsymmetric
problem can be challenging. One is often required to use matrix-dependent prolongation
operators, sophisticated smoothers, and expensive multigrid cycles, such as the W- and
the F-cycle. In Ref. [17] sophisticated multigrid methods are studied as both solvers and
preconditioners for nonsymmetric problems. For the problems considered, multigrid was
found to be more robust and efficient as a preconditioner than it was as a stand-alone
solver. Here, multigrid is considered only as a preconditioner, and the multigrid precondi-
tioner will have very simple attributes in terms of prolongation operators, smoother, and
cycle.

For this study we will work with the CELEST2D code, an unpublished modification of
CELEST1D [3]. CELEST2D is electrostatic but contains a spatially varying (time inde-
pendent) magnetic field. Indeed, it is the electrostatic potential equation, from the implicit
moment method, which provides the greatest challenge to iterative solvers. The elliptic
equation for electrostatic potential,φ, in the implicit moment method of CELEST2D,
is

∇ · [ε(r) · ∇φ] = ρ(r). (1)

Here,r is the position vector,ε(r) is a spatially varying dielectric tensor, andρ(r) is the
space charge. The functional form ofε(r) in CELEST2D is

ε = 1+
∑

s

αs{1− 1×Ωs +ΩsΩs}, (2)
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wheres is a species label (e.g., electrons and ions) andαs andΩs are given by

Ωs = qsδt

2msc
B, (3)

αs = ωs
ps

δt2

2

/
(1+Ωs · Ωs). (4)

qs is the species charge,ms is the species mass,B is the magnetic field, andc is the speed of
light. The plasma frequencies,ωps, and cyclotron frequency,Ωs, are comparable or larger
in size thanδt−1 in typical simulations with CELEST2D. Consider the asymmetry of the
dielectric tensorε. The symmetric and antisymmetric parts ofε are given by

εs = 1
2[ε+ εT ],

εA = 1
2[ε− εT ].

One can verify by direct substitution thatεT (B)= ε(−B), and thus that

∇ · εA · E = ∇ ·
∑

s

αs(E×Ω2). (5)

As noted by Plumb [7], this is a convection term,

∇ ·
∑

s

(E×Ωs) = +(∇ × αsΩs) · ∇φ. (6)

The convection “velocity,”∇ ×αs ·Ωs, is solenoidal.
Equation (1) is discretized using finite volumes in a general coordinate system, which

produces a 9-point numerical stencil in two dimensions and a 27-point stencil in three
dimensions [22].φ(r) andρ(r) are located at cell centers andε(r) is located at cell vertices.
It should be noted that the resulting numerical stencil for a 2-D uniform grid, withε(r)= 1,
is not the standard 5-point star, but rather a 5-point cross.

Again, the major difficulty arises from the fact that the off-diagonal components ofε(r),
which are proportional to the simulation time stepδt , cause the resulting matrix equation
for φ,

Aφ = ρ, (7)

to be nonsymmetric. Not only isA nonsymmetric, but in some cases diagonal dominance
may be lost on nonuniform grids.

2. MULTILEVEL PRECONDITIONED GMRES

The base solver for Eq. (1) in CELEST2D is a preconditioned Krylov method. The
Krylov method is GMRES [12] since the matrix equation is nonsymmetric. The base pre-
conditioner is a Jacobi iteration, otherwise referred to as diagonal scaling. Preconditioned
Krylov methods are modern, robust, general elliptic solvers, and they can be implemented in
a matrix-free fashion (linear or nonlinear). However, they do not scale well with grid refine-
ment. By this we mean that as the number of grid points increases, the number of iterations
needed to achieve the same level of convergence also increases.
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Probably the best known Krylov method is the conjugate gradient (CG) method made
popular in the computational physics community by Kreshaw [23]. It is worthwhile to
compare CG, which can be applied only to symmetric matrices, to GMRES, which can be
applied to nonsymmetric matrices, in terms of work and storage as a function of iteration.
In CG, work scales linearly, and required storage is constant, as the number of iterations
increases because CG enjoys a short vector recurrence relationship which allows one to
construct an orthogonal set of search directions without storing all of the search directions.
In GMRES, work scales quadratically, and required storage scales linearly, as a function of
iteration count because GMRES must store all of the search directions in order to maintain
an orthogonal set. An often employed “fix” is to store onlyk Krylov vectors, GMRES(k).
If linear convergence is not achieved afterk iterations a new, temporary, linear solution
is constructed from the existingk vectors and GMRES is restarted, with this temporary
solution as the initial guess. This restarting can significantly affect the linear convergence
rate. When one uses GMRES one is greatly motivated to keep the required number of
GMRES iterations low, which translates into effective preconditioning.

The right preconditioned form of Eq. (7) is

(AP−1)(Pφ) = ρ, (8)

whereP represents symbolically the preconditioning matrix andP−1 represents its inverse.
In practice, this inverse is only approximately realized through some standard iterative
process. Each GMRES iteration requires a preconditioned matrix–vector multiply,

w = (AP−1)v, (9)

wherev is the known,nth, search direction andw represents the first step in forming the
(n+ 1)st search direction. The multiply requires two steps. Step 1 is preconditioning, where
Py= v is iteratively solved fory. Step 2 is the matrix–vector multiply,w=Ay. It is precisely
step 1 where we will employ a multigrid method.

In solving linear systems arising from discretized PDEs it is most common to see variants
of incomplete factorizations (ILU–GMRES or ICCG) as preconditioners or matrix splitting
methods (Jacobi, Gauss-Seidel). For any single grid preconditioner, whose memory scales
linearly with problem size, the inequality holds,

κ
(
AP−1

SG

)
N2
>κ
(
AP−1

SG

)
N1
. (10)

Here,κ(M) is the condition number of matrixM , N is the dimension of the linear system
N2> N1, and the subscriptSGdenotes single grid. The number of Krylov iterations re-
quired to achieve a selected convergence tolerance is linearly proportional to the condition
number of the preconditioned system. Thus, asN increases, not only will the cost of a
GMRES iteration increase but also the number of GMRES iterations, for a given conver-
gence tolerance, will increase. An approach for overcoming this scaling is the multigrid
method [19–21]. Multigrid methods promise optimal scaling with problem size, which
means that the number of iterations required, for a given convergence tolerance, is inde-
pendent of grid dimension. However, as stated previously, developing a robust multigrid
method for nonsymmetric problems can be challenging, and very time consuming, often
requiring significant problem specific tuning. We will consider the performance of a simple
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multigrid method as a preconditioner, knowing that

κ
(
AP−1

MG

)
N2
≈ κ(AP−1

MG

)
N1
. (11)

The subscriptMG here denotes a multigrid based preconditioner. This basic concept is
not new [24]. The application of multigrid methods as preconditioners to CG on symmet-
ric problems has been considered for problems arising in incompressible fluid flow [25],
semiconductor simulation [26], and porous media flow [27]. For nonsymmetric problems,
sophisticated multigrid has been considered a preconditioner in Ref. [17], and simple multi-
grid methods have been considered a preconditioner in Ref. [18].

For completeness, and clarity, we review briefly a standard 2-Grid V-Cycle [19–21]. We
wish to obtain the iterative solution toPy= v with f ≡ fine, andc≡ coarse.

1. RelaxP f y0
f = v for y1

f (Jacobi, Gauss-Seidel, ILU, ...).
2. Evaluate the linear residualresf = v−P f y1

f , and restrict it to a coarse grid,resc =
R ∗ resf .

3. Solve the coarse grid problem,Pcδyc= resc, for the coarse grid correctionδyc.

4. Prolong the coarse grid correction and update the fine grid solution vector,y2
f =

y1
f +P ∗ δyc.

5. RelaxP f y2
f = v for y3

f (Jacobi, Gauss-Seidel, ILU, ...).

Still to be defined are: (1) a definition of the prolongation and restriction operatorsP and
R, and (2) a definition ofPc. A standard multigrid (greater than 2) V-Cycle is realized
by recursively inserting steps 1 through 5 into step 3 until a “very coarse” grid has been
reached, upon which a direct solve is performed. This will be the preconditioner for solving
Eq. (8) with preconditioner GMRES.

3. MULTIGRID SPECIFICS

To complete the definition of the multigrid preconditioner one must define restriction,
R, and prolongation,P, operators, and a method for constructing the required coarse
grid matrices. In the multigrid method, restriction,R, is used to transfer residuals (i.e.,
v−P f y1

f ) from a fine to a coarse grid, and prolongation,P, is used to transfer solution
vector corrections (i.e.,δyc) from a coarse to a fine grid. In this study, piece-wise constant
interpolation is used for bothR andP, with R possibly volume weighted. This is a very
simple choice and most likely would not produce an optimal multigrid method as a stand-
alone solver [21].

Next, one must define a method for calculating the coarse grid representation ofP. There
are at least two distinct options. The first is to applyR to ε(r) to transfer the essential
physics from the fine to the coarse grid and re-discretize Eq. (1). A second approach is to
use the restriction and prolongation operators, along with the fine grid linear operator, to
construct a coarse grid operator. This would come from

Pc = R ∗ P f ∗ P. (12)

HerePc is the(N/2)× (N/2) coarse grid operator andP f is theN× N fine grid operator.
This approach is often referred to as a Galerkin coarse grid operator [21, 20]. In this study
the second approach is employed due to its simplicity and “Black Box” nature. Clearly,
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only the fine grid matrix needs to be supplied to the preconditioner. Our approach is related
to the Black Box multigrid concept [28] with the main exception that in Ref. [28] more
sophisticated inter-grid transfer operators are used.

3.1. Additive Correction Multigrid

We present a detailed algebraic explanation of the preconditioner as it would be applied
to a simple 2-D Poisson problem on a uniform gird with a 5-point star stencil. The origin of
this simple multilevel idea can be traced back to Ref. [29], and its application as a multigrid
solver can be found in Ref. [30]. Assume a simple 2-D 5-point operator for the problem
∇2y= v, which results in a penta-diagonal matrix,P f ,

P f = (P1 f , P2 f , P3 f , P4 f , P5 f ). (13)

We desire the solution toPy= v for each finite volume (i, j ). That is,

P1 f
i, j ∗ yi−1, j + P2 f

i, j ∗ yi, j−1+ P3 f
i, j ∗ yi, j + P4 f

i, j ∗ yi, j+1+ P5 f
i, j ∗ yi+1, j = vi, j . (14)

Given an initial fine grid solutiony∗, the linear residual at finite volume (i, j ) is

resf
i, j =vi, j − P1 f

i, j ∗ y∗i−1, j − P2 f
i, j ∗ y∗i, j−1− P3 f

i, j ∗ y∗i, j − P4 f
i, j ∗ y∗i, j+1− P5 f

i, j ∗ y∗i+1, j .

(15)

For the two-level grid shown in Fig. 1, the four fine grid volumes,(i, j ), (i + 1, j ), (i, j + 1),
and(i + 1, j + 1), are combined to produce one coarse grid volume, (I , J). The coarse grid

FIG. 1. Two-level finite volume grid.
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correction is defined using piece-wise constant prolongation,P,

yi, j = y∗i, j + δyI ,J,

yi+1, j = y∗i+1, j + δyI ,J,

yi, j+1 = y∗i, j+1+ δyI ,J,

yi+1, j+1 = y∗i+1, j+1+ δyI ,J .

(16)

The next step is to add the four equations corresponding to volumes(i, j ), (i + 1, j ),
(i, j + 1), (i + 1, j + 1) that result from inserting Eq. (16) into Eq. (14). The contribution
to this sum from volume (i, j ) is

P1 f
i, j ∗ (y∗i−1, j + δyI−1,J)+ P2 f

i, j ∗ (y∗i, j−1+ δyI ,J−1)+ P3 f
i, j ∗ (y∗i, j + δyI ,J)

+ P4 f
i, j ∗ (y∗i, j+1+ δyI ,J)+ P5 f

i, j ∗ (y∗i+1, j + δyI ,J) = vi, j . (17)

The coarse grid residual is defined by piece-wise constant restriction,R,

resc
I ,J = resf

i, j + resf
i+1, j + resf

i, j+1+ resf
i+1, j+1. (18)

After the four equations from the fine grid are added and terms are collected the following
coarse grid correction equation results for volume (I , J):

P1c
I ,J ∗ δyI−1,J + P2c

I ,J ∗ δyI ,J−1+ P3c
I ,J ∗ δyI ,J + P4c

I ,J ∗ δyI ,J+1

+ P5c
I ,J ∗ δyI+1,J = resc

I ,J . (19)

As a result it can be seen that the coarse grid matrix(Pc=R ∗ P f ∗ P) is defined as

P1c
I ,J = P1 f

i, j + P1 f
i, j+1,

P2c
I ,J = P2 f

i, j + P2 f
i+1, j ,

P4c
I ,J = P4 f

i, j+1+ P4 f
i+1, j+1,

P5c
I ,J = P5 f

i+1, j + P5 f
i+, j+1,

P3c
I ,J = Sum of all 20P f ’s from the 4 fine grid volumes

−P1c
I ,J − P2c

I ,J − P4c
I ,J − P5c

I ,J .

(20)

Thus a simple coarse grid matrix that is straightforward to form has resulted from simple
choices forR andP. The boundary conditions inP f are automatically included inPc. This
multigrid preconditioner is easy to add to an existing preconditioned GMRES solver. It is
well known that for a second order equation one should use either bi-linear prolongation or
restriction to obtain an optimal multigrid algorithm [21]. However, results suggest that the
simple algorithm above is an effective preconditioner. Recall that, for our problem, in 2-D,
P f is actually a matrix with nine diagonals.

3.2. Smoother

Finally, a smoother for the multigrid algorithm must be chosen. We will use a simple
damped Jacobi iteration where the damping coefficient may change from cell to cell. The
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preconditioner will be one V-cycle [19] with an equal number of pre- and post-smoothing
steps (sweeps), a V(ν, ν) cycle. Traditionally in multigrid a direct solve is used on the
coarsest grid, but that is not done here. While Jacobi may not be the most effective smoother,
its use results in potentially significant storage savings, especially in 3-D with a 27-point
stencil, in the following manner. Multipass Jacobi forAx= b with A= L +D+U can be
written as

xn+1 = D−1[b− (L + U)xn]. (21)

This requires the formation ofD, andL , andU, i.e., A. In plasma simulation, particles
compete for memory since the more available memory one has the more particles one can
simulate. Thus one is motivated to consider all options for memory savings in the elliptic
field solver. A reduced storage approach exploits the relation,(L + U)xn = Axn − Dxn,
and iterates the equation

xn+1 = D−1[b− (Axn − Dxn)], (22)

whereAxn formed in matrix-free fashion [31]. Thus one need only formD (main diagonal,
i.e., one non-zero diagonal) and be able to formAxn andD on coarse grids. This is our
primary motivation for using the Jacobi smoother. The damped Jacobi iteration is realized by

xn+1 = D̃−1[b− (Axn − Dxn)], (23)

whereD̃ is a locally modified version ofD.

4. PERFORMANCE RESULTS

For the first performance result the single grid Jacobi based preconditioner is compared
to the multigrid Jacobi based preconditioner. The physical parameters for this problem
aremi /me= 100, ωp,e= 1, Äe/ωp,e= 0.5, ωp,e · δt = 2.0. These results are for a uniform
grid. The number of sweeps is 3(ν= 3) and the damping coefficient is a uniform 2/3,
for both the single grid preconditioner and the multigrid smoother. Five GMRES vectors
are stored and restart is employed with a linear convergence tolerance of 1.0× 10−6. The
boundary conditions onφ are Dirichlet on three sides and Neumann of the fourth side.
Table I contains performance data as a function of grid refinement for 32× 32, 64× 64,
128× 128, and 256× 256 grids. The data are averaged over three time steps, with the same
time step on each cycle and on each grid. All runs were made on a CRAY Y-MP.

TABLE I

Algorithm Performance for a Uniform Grid as a Function of

Grid Refinement: Average Number of GMRES Iterations per

Time Step, and Ratio of CPU Time

Single grid (SG) Multigrid (MG) CPU ratio
Grid preconditioner preconditioner SG/MG

32× 32 48 8.7 1.8
64× 64 116 9 2.8

128× 128 398 11 5.65
256× 256 691 9 10.5
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FIG. 2. Performance as a function of GMRES vectors stored.

It is quite apparent that the multigrid preconditioner has not only significantly reduced the
required number of GMRES iterations; it has also decreased the growth of required iterations
as a function of grid refinement. In fact, the number of required GMRES iterations appears
to be independent of the grid dimension. On the 256× 256 grid a factor of 10 speedup has
been achieved.

As a second study we vary the Krylov subspace dimension, GMRES(k), with the results
plotted in Fig. 2. This is the same problem as that above on the 128× 128 uniform grid.
Restart is employed with a linear convergence tolerance of 1.0× 10−6. The same time step
is used on all grids, and the data are averaged over three time steps.

It should be noted that the storage of the matrix on the fine grid is equivalent to nine
GMRES vectors, and that the additional multigrid storage is roughly equivalent to four
GMRES vectors. Given this we can see that the multigrid preconditioner can be viewed as
providing equivalent CPU performance for about half of the storage. If this performance
carries over to the reduced storage Jacobi smoother there could be a factor of 10 savings
in storage for the same CPU performance. With the multigrid based preconditioner, where
the average number of GMRES iterations per time step is 10, there is no benefit to having
a Krylov space larger than 5.

Next, the performance of the single grid Jacobi based preconditioner is compared to the
multigrid Jacobi based preconditioner, for a nonuniform grid. These results have no volume
weighting in the restriction operator. The number of sweeps is 1(ν= 1) and the damping
coefficient is locally determined to ensure diagonal dominance, for both the single grid
preconditioner and the multigrid smoother. Five GMRES vectors are stored and restart is
employed with a linear convergence tolerance of 1.0× 10−6. Again the boundary condi-
tions onφ are Dirichlet on three sides and Neumann on the fourth side. Table II contains
performance data as a function of grid refinement for 32× 32, 64× 64, 128× 128, and
256× 256 grids. The data were averaged over three time steps, with the same time step on
each cycle and on each grid.

It is again apparent, in the results of Table II, that the multigrid preconditioner has not
only significantly reduced the required number of GMRES iterations; it has also decreased
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TABLE II

Algorithm Performance for a Nonuniform Grid as a Function

of Grid Refinement: Average Number of GMRES Iterations per

Time Step, and Ratio of CPU Time

Single grid (SG) Multigrid (MG) CPU ratio
Grid preconditioner preconditioner SG/MG

32× 32 451 24 8.2
64× 64 1672 39.5 11.5

128× 128 6217 64 14.5
256× 256 7322 39 19.8

the growth of required iterations as a function of grid refinement. The nonuniform grid is a
much more difficult problem, especially for our simple Jacobi smoother. However, inside a
simple multigrid preconditioner we still obtain good performance and excellent performance
relative to no multigrid. Note that the CPU gains for this problem are substantial, even on the
smaller grids. Our experience suggests that 40 GMRES iterations is a respectable number
on a 256× 256 nonuniform grid, considering that the Krylov subspace dimension is only 5.

As a measure of diagonal dominance we have computed the average, over all rows in the
matrix, of the main diagonal divided by the sum of the absolute values of all off-diagonal
entries in that row. For the 32× 32 uniform grid this number was approximately 2.0, while
for the 32× 32 nonuniform grid this number was approximately 1.0. The nonuniform grid
problem has specific rows in which this diagnostic is less than 1.0. This suggests using
a more robust smoother such as ILU. However, for our specific problem we are strongly
motivated by the potential memory savings in the reduced storage Jacobi smoother, and
thus we do not consider ILU.

The results given in Table II seem to indicate that the 128× 128 grid was particularly
difficult. We have redone this calculation with a Krylov subspace dimension of 10 and
20 with the multigrid preconditioner. With GMRES(10) the average GMRES iterations
dropped to 39, and the GMRES(20) the average GMRES iterations dropped to 33. Thus,
for more difficult nonuniform grid problems there is a possible benefit to retaining a larger
Krylov subspace dimension. However, if storage is an issue, the performance of GMRES(5)
acceptable.

Finally, we mention that the possibility of volume weighting in our restriction operatorR
was considered on the nonuniform grid problem. It did not seem to provide any consistent
improvement on this problem.

5. CONCLUSIONS

We have developed and implemented a multigrid based preconditioner for GMRES and
have applied this to the solution of a nonsymmetric elliptic problem that arises in implicit
plasma simulation. A simple multigrid method as a preconditioner to GMRES appears to
make a robust and efficient method for the elliptic field solver required in implicit plasma
simulation codes on the problems considered. The multigrid based preconditioner can render
the simple Jacobi based smoother effective, even on problems where diagonal dominance
is marginal. On the uniform grid problem, the simple multigrid based preconditioner inside
of GMRES(5) produced an effective iterative solver, with the number of required iterations



A MULTILEVEL FIELD SOLVER 387

independent of grid dimension. The CPU gains, as compared to the single grid Jacobi
preconditioner, were significant with a factor of 10 on fine uniform grids and a factor of 20
on fine nonuniform grids.

It is not straightforward to compare the results of this study to similar studies involving
convection–diffusion equations, which also yield nonsymmetric systems.These studies use
more sophisticated multigrid preconditioners [17]. However, the same simple multigrid pre-
conditioner presented here has been used inside of a Newton–GMRES method to solve the
incompressible, convection dominated, Navier–Stokes equations in Ref. [18]. The simple
multigrid preconditioner significantly outperformed an ILU based preconditioner and the
multigrid preconditioned Newton–GMRES method was shown to be competitive with a
more sophisticated nonlinear multigrid method. For the specific application to the elliptic
field solve required in implicit plasma simulation the results of a simple multigrid based
preconditioner are quite positive, and thus should be considered for other nonsymmetric
systems. In the future we hope to combine the positive results of this study and the results
in Ref. [18] and apply our multilevel solve to the streamlined Darwin field equations [4].

Finally, our true “measure of merit” for the simple multigrid preconditioner applied to
our problem is not producing an algorithmically optimal solver, although the result for the
uniform grid problem presented appears to approach this. The true “measure of merit” is
the impact this method can have on implicit plasma simulation with a large time step, where
there is a clear need for a robust and efficient elliptic equation solver.
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